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Problem Set #8

Exercise 4 p 53
A prime ideal p of K is totally split in the separable extension L/K if and only if it is
totally split in the Galois closure N/K of L/K.
Solution:
Let L/K be a separable extension and denote by N/K ”its” Galois closure G. In G,
consider the subgroup H = G(N |L).
Claim: Let p be a prime ideal of K and Pp be the set of all the prime ideal of L above
p. If P is a prime ideal of N above p.
One can define a map

φ : H\G/GP → Pp

HσGP 7→ σP ∩ L
and it is a bijection of sets.
Proof of the claim
First, φ is well-defined. Indeed, let τ and σ ∈ G, suppose that HσGP = HτGP. Then,
there is h ∈ H and g ∈ GP such that τ = hσg, so that

(τP) ∩ L = (hσgP) ∩ L = h(σP) ∩ L = σP ∩ L

In fact, by definition H fixes L and g stabilizes P being in the decomposition group of
P Then,

φ(HσGP) = φ(HτGP)

Also, φ is surjective. Indeed, let q ∈ Pp, we want to find σ such that φ(HσGP) = q i.e.
σ(P) ∩ L = q. Let Q be a prime ideal above q. So that

Q ∩K = q ∩K = p

So, Q and P are prime ideal in the Galois extension N/K above p. As a consequence,
there is g ∈ G such that gP = Q and φ(HσGP) = σ(P) ∩ L = Q ∩ L = q.
Finally, φ is injective. Suppose that for some σ, τ ∈ G, φ(HσGP) = φ(HτGP), i.e.
σ(P) ∩ L = τ(P) ∩ L = q. We want to prove that HσGP = HτGP. Since σ(P) and
τ(P) are two prime ideal over q, there is h ∈ H such that hσ(P) = τ(P) and then
τ−1hσ(P) = P that is τ−1hσ ∈ GP so that hσg−1 = τ and HσGP = HτGP and this
prove the claim.
Recall that a prime ideal is totally split in some Galois extension it decomposition group
is trivial.
Suppose that p is a prime ideal totally split in K, the GP, so that

|H\G/GP| = [G : H] = [L : K] = |Pp|
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so that p is totally split in L.
Conversely, if p split completely in L, then the number of double cosets H\G/GP equals
[L : K] = [G : H]; this is the same as the number of right cosets of H; since each double
coset decomposes as a disjoint union of right cosets of H,

HσGP =
∐
g∈GP

Hσg

It follows that HσGP = Hσ for all σ ∈ G and in particular all conjugates of GP are
contained in H. That is, the normal subgroup N(GP) generated by GP is contained in
H.
But now, if F is the fixed field of N by the action of N(GP), by Galois theory the
extension F/K is Galois so by definition of the Galois closure F = N .

Exercise 5 p 53
For a number field K, the statement of proposition (8.3) concerning the prime decom-
position in the extension K(θ) holds for all prime ideals p - (B : A[θ]).
Solution:
Let L = K(θ) with θ ∈ B and p a prime number. We construct the homomorphism:

θ : A[θ]/pA[θ] → B/pB
x+ pA[θ] 7→ x+ pB

Clearly well defined. Suppose p - m = [B : A[θ]] (this index is finite and B and A[θ]
have equal rank). Pick an m̃ for which m̃m ≡ 1 mod pZ (hence mod pB too). If x ∈ B
is arbitrary then we know that mx ∈ A[θ] (consider the finite quotient group B/A[θ])
hence m̃mx + pA[θ] 7→ x + pB, so we know the map is surjective. Both quotients are
finite groups of size pn where n = [K(θ) : K], so the map must be an isomorphism.
Therefore, we have

B/pB ' A[θ]/pA[θ] ' A[T ]/(p, p(T )) ' Fp[T ]/(p(T ))

where f(T ) is the minimal polynomial of θ (monic and integer coefficients).
Suppose pB and f(T ) ∈ Fp[T ] factor into prime ideals and irreducibles respectively as

pB = pe11 ...p
eg
g , p̄(T ) = p̄1(T )r1 ....p̄h(T )rh

By Chinese Remainder Theorem,

B/pB '
g∏
i=1

B/peii , Fp[T ]/(p̄(T )) '
h∏
j=1

Fp[T ]/(p̄i(T )ri)

A maximal ideal of a direct product is one in which all but one of the summands may
contain anything, and that one coordinate contains elements from a maximal ideal of
that summand’s ring; Futhermore a maximal ideal of B/P µ corresponds to a maximal
ideal of B containing P µ, which must be P for B, Fp[T ] and P = Pi, (p̄i(T )) resp.
Therefore

{p|p} 'MaxSpec(B/pB) 'MaxSpec(Fp[T ]/(p̄(T ))) ' {π|p̄}
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is a natural bijection. In particular, this means g = h (taking cardinalities above).
Futhermore, the data ei and ri can respectively be read off the factors B/peii and Fp[T ]/(p̄i(T ))ri

as the nilpotent of their unique maximal ideals, and the data fi and deg(pi) can be read
off of the size of their unique residue fields. Yet further, if we pull back (p̄i(T )) through
the isomorphism and then lift back to B we obtain pi = (p, pi(θ)).

Exercise 7 p 53
Let (a, p) = 1 and aν = rν modp, ν = 1, ..., p − 1, 0 < rν < p. Then the rν give a
permutation πa of the number 1, ... p− 1. Show that sgn(πa) =

(
a
p

)
.

Solution:
We can show that there is a unique non-constant morphism of group from (Z/pZ)∗ to
{±1} in fact it is determined by the image of the generator which must be −1 since the
morphism is not constant. We can check easily that the maps a 7→ sgn(πa) and a 7→

(
a
p

)
are such morphisms and that they are not constant since there is always non-square mod
p and a = ξ a primitive root of unity leads to sgn(πξ) = −1. As a consequence, they
are equals.

Or

Note that for any a, b coprime with p, we have πaπb = πab.
Let ζ ∈ F∗p be a primitive element. Then F∗p = {1, ζ, ...., ζp−2}.
Let a be an integer coprime with p, then there is i ∈ {1, ..., p1} such that a = ζ i−1. Now,
we observe that σζ is the cycle (1, ζ, ..., ζp−2) whose parity is (−1)(p−1)−1 = (−1)p−2 =
−1 since p is odd. Then sgn(πa) = sgn(πjζ) = sgn(πζ)

j = (−1)j (Here we use the
multiplicativity of sgn.
Now

(
a
p

)
≡ ζj(p−1)/2 mod p, by Euler criterion. But ζ(p−1)/2 = −1 mod p ζ being a

primitive root, So that
(
a
p

)
= (−1)j = sgn(πa).

Exercise 9 p 53
Study the Legendre symbol

(
3
p

)
as a function of p > 3. Show that the property of 3

being a quadratic residue or non-residue mod p depends only on the class of p mod 12.

Solution:
Let p be a prime p > 3, so that gcd(p, 3) = 1.
By quadratic reciprocity:(3

p

)(p
3

)
= (−1)(3−1)/2·(p−1)/2 = (−1)(p−1)/2

Trivially,
(
1
3

)
= 1 and

(
2
3

)
= −1.

As a consequence, if p ≡ 1 mod 3 then
(
3
p

)
= (−1)(p−1)/2. So that

(
3
p

)
depends only on

the parity of (p−1)/2. More precisely,
(
3
p

)
= −1 if (p−1)/2 is odd, that is p ≡ 3 mod4

and
(
3
p

)
= 1 if (p− 1)/2 is even, that is p ≡ 1mod4.

Now, if p ≡ −1 mod 3 then
(
3
p

)
= −(−1)(p−1)/2. Again,

(
3
p

)
depends only on the parity

of (p − 1)/2. More precisely,
(
3
p

)
= −1 if (p − 1)/2 is even, that is p ≡ 1 mod4 and
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(
3
p

)
= 1 if (p− 1)/2 is odd, that is p ≡ −1mod4.

In summary, using chinese remainder, We get
(
3
p

)
= 1 if and only if p ≡ ±1 mod 12.

As a consequence
(
3
p

)
= −1 if and only if p ≡ ±5 mod 12.
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